Perovskite-type catalytic materials for environmental applications

نویسندگان

  • Nitin Labhasetwar
  • Govindachetty Saravanan
  • Suresh Kumar Megarajan
  • Nilesh Manwar
  • Rohini Khobragade
  • Pradeep Doggali
  • Fabien Grasset
چکیده

Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N2O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic oxidation of toluene over LaBO3 (B= Fe, Mn and Co) and LaCo0.7B′0.3O3 (B′= Fe and Mn) perovskite-type

In this paper, LaBO3 perovskite type catalyst formulations were prepared by sol-gel auto combustion method using citric acid as the fuel. Activity of catalysts was tested in catalytic oxidation of toluene as a model of volatile organic compounds. LaCoO3 perovskite formulation showed the highest activity among LaBO3 (Fe, Mn and Co) perovskite catalysts. So, LaCoO3 perovskite based catalyst was s...

متن کامل

Experimental and Kinetic Study of CO Oxidation Over LaFe1-xCuxO3 (x=0, 0.2, 0.4, 0.6) Perovskite-Type Oxides

In this paper, catalytic oxidation of CO over the LaFe1-xCuxO3 (x= 0, 0.2, 0.4, 0.6) perovskite-type oxides was investigated. The catalysts were synthesized by sol-gel method and characterized by XRD, BET, FT-IR, H2-TPR and SEM methods. The catalytic activity of catalysts was tested in catalytic oxidation of CO. XRD patterns confirmed the synthesized perovskites to be single-phase perovskite-ty...

متن کامل

Evaluation of LaBO3 (B=Mn, Cr, Mn0.5Cr0.5) perovskites in catalytic oxidation of trichloroethylene

In this study, La–Mn–Cr perovskite-type catalysts were synthesized as LaMnO3,LaCrO3, and LaMn0.5Cr0.5O3 by a microwave-assisted gel-combustion method. They were then calcined at 600oC for 5h in a...

متن کامل

Hierarchically nanostructured materials for sustainable environmental applications

This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic ga...

متن کامل

Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides

Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic-electronic conducting perovskite-type materials La0.6Sr0.4FeO3-δ (LSF) and SrTi0.7Fe0.3O3-δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated stru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015